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1. Introduction

Mapping the landscape of vacua is one of the outstanding challenges in string theory. A sim-

pler version of the problem is to characterize the “open string landscape,” the set of possible

D-brane configurations in a fixed closed string background. In recent years evidence has

accumulated that classical open string field theory (OSFT) gives an accurate description of

the open string landscape. See [1 – 3] for reviews. Much of this evidence is based on numeri-

cal work in level truncation, and there remain many interesting questions. Is the correspon-

dence between boundary conformal field theories and classical OSFT solutions one-to-one?

Is the OSFT action of a single D-brane capable of describing configurations of multiple

D-branes? Answering these questions is likely to require analytic tools. Important analytic

progress was made by Schnabl [4]. He found the exact solution corresponding to the tachyon

vacuum by exploiting the simplifications coming from the clever gauge fixing condition

BΨ = 0 , (1.1)

where B is the antighost zero mode in the conformal frame of the sliver. Various aspects

of Schnabl’s construction have been studied in [5 – 12].

In this paper we describe new analytic solutions of OSFT corresponding to exactly

marginal deformations of the boundary conformal field theory (CFT). Previous work on
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exactly marginal deformations in OSFT [13] was based on solving the level-truncated equa-

tions of motion in Siegel gauge. The level-truncated string field was determined as a func-

tion of the vacuum expectation value of the exactly marginal mode fixed to an arbitrary

finite value. Level truncation lifts the flat direction, but it was seen that as the level is

increased the flat direction is recovered with better and better accuracy. Instead, our ap-

proach is to expand the solution as Ψλ =
∑∞

n=1 λnΨ(n), where λ parameterizes the exact

flat direction. We solve the equation of motion recursively to find an analytic expression

for Ψ(n). Our results are exact in that we are solving the full OSFT equation of motion, but

they are perturbative in λ; by contrast, the results of [13] are approximate since the equa-

tion of motion has been level-truncated, but they are non-perturbative in the deformation

parameter.

The perturbative approach of this paper has certainly been attempted earlier using the

Siegel gauge. Analytic work, however, is out of the question because in the Siegel gauge

the Riemann surfaces associated with Ψ(n), with n > 2, are very complicated. The new

insight that makes the problem tractable is to use, as in [4], the remarkable properties of

wedge states with insertions [14 – 16].

We find qualitatively different results, according to whether the matter vertex operator

V that generates the deformation has regular or singular operator products. Sections 2

and 3 of the paper are devoted to the case of regular operator products, and the case of

singular operator products is discussed in section 4. A key technical point is the calculation

of the action of B/L, where L = {QB , B }, on products of string fields.

If V has regular operator products, the equation of motion can be systematically solved

in the Schnabl gauge (1.1). The solution takes a strikingly compact form given in the CFT

language by (3.3), and its geometric picture is presented in figure 1. The solution Ψ(n) is

made of a wedge state with n insertions of cV on its boundary. The relative separations of

the boundary insertions are specified by n−1 moduli {ti}, with 0 ≤ ti ≤ 1, which are to be

integrated over. Each modulus is accompanied by an antighost line integral B. The explicit

evaluation of Ψ(n) in the level expansion is straightforward for a specific choice of V .

In section 3.2 we apply this general result to the operator V = e
1√
α′ X

0

[17 – 23]. This

deformation describes a time-dependent tachyon solution that starts at the perturbative

vacuum in the infinite past and (if λ < 0) begins to roll toward the non-perturbative

vacuum. The parameter λ can be rescaled by a shift of the origin of time, so the solutions

are physically equivalent. The time-dependent tachyon field takes the form

T (x0) = λ e
1√
α′ x

0

+
∞∑

n=2

λn βn e
1√
α′ nx0

. (1.2)

We derive a closed-form integral expression for the coefficients βn and evaluate them nu-

merically. We find that the coefficients decay so rapidly as n increases that it is plausible

that the solution is absolutely convergent for any value of x0. Our exact result confirms

the surprising oscillatory behavior found in the p-adic model [19] and in level-truncation

studies of OSFT [19, 23]. The tachyon (1.2) overshoots the non-perturbative vacuum and

oscillates with ever-growing amplitude. It has been argued that a field redefinition to the
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variables of boundary SFT would map this oscillating tachyon to a tachyon field monotoni-

cally relaxing to the non-perturbative vacuum [23]. It would be very interesting to calculate

the pressure of our exact solution and check whether it tends to zero in the infinite future,

as would be expected from Sen’s analysis of tachyon matter [24, 1].

In section 3.3 we consider the lightcone vertex operator ∂X+, another example of a

marginal vertex operator with regular operator products. Following [25], we construct

the string field solution inspired by the Born-Infeld solution that describes a fundamental

string ending on a D-brane [26]. The lightcone direction X+ is a linear combination of the

time direction and a direction normal to the brane, and the vertex operator is dressed by

A(ki) eikiX
i

and integrated over the momenta ki along the spatial directions on the brane.

The solution is not fully self-contained within open string field theory: it requires sources,

which makes the analysis delicate. Sources are also required in the Born-Infeld description

of the solution.

If the operator product expansion (OPE) of V with itself is V (z)V (0) ∼ 1/z2, the

solution presented in figure 1 is not well defined because divergences arise as the sepa-

rations ti of the boundary insertions go to zero. We study the required modifications in

section 4. An important example is the Wilson-line deformation ∂X. We regularize the

divergences by imposing a cut-off in the integration region of the moduli. It turns out

that counterterms can be added to obtain Ψ(2) that is finite and satisfies the equation of

motion. Surprisingly, the result necessarily violates the gauge condition (1.1)! The naive

solution Ψ(2) = −B
L

(Ψ(1) ∗Ψ(1)) breaks down because the string field Ψ(1) ∗Ψ(1) contains a

component in the kernel of L. This phenomenon is a peculiar quirk of Schnabl gauge that

has no counterpart in Siegel gauge. Due to this technical complication, the construction

of the higher Ψ(n) becomes quite cumbersome, though still simpler than in Siegel gauge.

We argue that for all n, appropriate counterterms can be added to achieve a finite Ψ(n)

that solves the equation of motion. We discuss in detail the case of Ψ(3) and verify the

nontrivial cancellations that must occur for the construction to succeed. We leave it for

future work to achieve simpler closed-form expressions for Ψ(n). Such expressions will be

needed to investigate the nature of the perturbative series in λ and to make contact with

the non-perturbative, but approximate, level-truncation results of [13]. It will also be in-

teresting to understand better the relation between the conditions for exact marginality

of boundary CFT [27] and the absence of obstructions in solving the equation of motion

of string field theory. The technology developed in this paper will be also useful in open

superstring field theory [28].

Independent work by M. Schnabl on the subject of marginal deformations in string

field theory appears in [29].

2. The action of B/L

2.1 Solving the equation of motion in the Schnabl gauge

For any matter primary field V of dimension one, the state Ψ(1) corresponding to the

operator cV (0) is BRST closed:

QBΨ(1) = 0 . (2.1)
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In the context of string field theory, this implies that the linearized equation of motion of

string field theory is satisfied. When the marginal deformation associated with V is exactly

marginal, we expect that a solution of the form

Ψλ =
∞∑

n=1

λn Ψ(n) , (2.2)

where λ is a parameter, solves the nonlinear equation of motion

QBΨλ + Ψλ ∗ Ψλ = 0 . (2.3)

The equation that determines Ψ(n) for n > 1 is

QBΨ(n) = Φ(n) with Φ(n) = −
n−1∑

k=1

Ψ(n−k) ∗ Ψ(k) . (2.4)

For this equation to be consistent, Φ(n) must be BRST closed. This is easily shown using

the equations of motion at lower orders. For example,

QBΦ(2) = −QB

(
Ψ(1) ∗ Ψ(1)

)
= −QBΨ(1) ∗ Ψ(1) + Ψ(1) ∗ QBΨ(1) = 0 (2.5)

when QBΨ(1) = 0 . It is crucial that Φ(n) be BRST exact for all n > 1, or else we would en-

counter an obstruction in solving the equations of motion. No such obstruction is expected

to arise if the matter operator V is exactly marginal, so we can determine Ψ(n) recursively

by solving QBΨ(n) = Φ(n) . This procedure is ambiguous as we can add any BRST-closed

term to Ψ(n), so we need to choose some prescription. A traditional choice would be to

work in Siegel gauge. The solution Ψ(n) is then given by acting with b0/L0 on Φ(n). In prac-

tice this is cumbersome since the combination of star products and operators b0/L0 in the

Schwinger representation generates complicated Riemann surfaces in the CFT formulation.

Inspired by Schnabl’s success in finding an analytic solution for tachyon condensation,

it is natural to look for a solution Ψλ in the Schnabl gauge:

BΨλ = 0 . (2.6)

Our notation is the same as in [5, 7, 8]. In particular the operators B and L are the

zero modes of the antighost and of the energy-momentum tensor T , respectively, in the

conformal frame of the sliver,1

B ≡
∮

dξ

2πi

f(ξ)

f ′(ξ)
b(ξ) , L ≡

∮
dξ

2πi

f(ξ)

f ′(ξ)
T (ξ) , f(ξ) ≡ 2

π
arctan(ξ) . (2.7)

We define L± ≡ L ± L⋆ and B± ≡ B ± B⋆, where the superscript ⋆ indicates BPZ

conjugation, and we denote with subscripts L and R the left and right parts, respectively,

of these operators. Formally, a solution of (2.4) obeying (2.6) can be constructed as follows:

Ψ(n) =
B

L
Φ(n) . (2.8)

1Using reparameterizations, as in [8], it should be straightforward to generalize the discussion to general

projectors. In this paper we restrict ourselves to the simplest case of the sliver.
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This can also be written as

Ψ(n) =

∫ ∞

0
dT Be−TL Φ(n) , (2.9)

if the action of e−TL on Φ(n) vanishes in the limit T → ∞. It turns out that the action of

B/L on Φ(n) is not always well defined. As we discuss in detail in section 4, if the matter

primary field V has a singular OPE with itself, the formal solution breaks down and the

required modification necessarily violates the gauge condition (2.6). On the other hand,

if operator products of the matter primary field are regular, the formal solution is well

defined, as we will confirm later. In the rest of this section, we study the expression (2.9)

for n = 2 in detail.

2.2 Algebraic preliminaries

We prepare for our work by reviewing and deriving some useful algebraic identities. For

further details and conventions the reader can refer to [7, 8].

An important role will be played by the operator L − L+
L and the antighost analog

B − B+
L . These operators are derivations of the star algebra. This is seen by writing the

first one, for example, as a sum of two familiar derivations in the following way:

L − L+
L =

1

2
L− +

1

2
(L+

R + L+
L ) − L+

L =
1

2
L− +

1

2
(L+

R − L+
L ) =

1

2
(L− + K) . (2.10)

We therefore have

(L − L+
L ) (φ1 ∗ φ2) = (L − L+

L )φ1 ∗ φ2 + φ1 ∗ (L − L+
L )φ2 . (2.11)

Noting that L+
L (φ1 ∗ φ2) = L+

L φ1 ∗ φ2, we find

L(φ1 ∗ φ2) = Lφ1 ∗ φ2 + φ1 ∗ (L − L+
L )φ2 , (2.12)

B(φ1 ∗ φ2) = Bφ1 ∗ φ2 + (−1)φ1φ1 ∗ (B − B+
L )φ2 . (2.13)

Here and in what follows, a string field in the exponent of −1 denotes its Grassmann

property: it is 0 mod 2 for a Grassmann-even string field and 1 mod 2 for a Grassmann-

odd string field. From (2.12) and (2.13) we immediately deduce formulas for products of

multiple string fields. For B, for example, we have

B(φ1∗φ2∗. . . φn) = (Bφ1)∗. . .∗φn+

n∑

m=2

(−1)
Pm−1

k=1 φk φ1∗. . .∗(B−B+
L )φm∗. . .∗φn . (2.14)

Exponentiation of (2.12) gives

e−TL(φ1 ∗ φ2) = e−TLφ1 ∗ e−T (L−L+
L )φ2 . (2.15)

From the familiar commutators

[L,L+] = L+ , [B,L+] = B+ , (2.16)
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we deduce

[L,L+
L ] = L+

L , [B,L+
L ] = B+

L . (2.17)

See section 2 of [7] for a careful analysis of this type of manipulations. We will need to

reorder exponentials of the derivation L − L+
L . We claim that

e−T (L−L+
L ) = e(1−e−T )L+

L e−TL . (2.18)

The above is a particular case of the Baker-Campbell-Hausdorff formula for a two-

dimensional Lie algebra with generators x and y and commutation relation [x, y ] = y.

In the adjoint representation we can write

x =

(
0 1

0 1

)
, y =

(
−1 1

−1 1

)
. (2.19)

It follows that as two-by-two matrices, x2 = x, xy = y, yx = 0, and y2 = 0. One then

verifies that

eαx+βy = e
β
α

(eα−1)y eαx when [x, y ] = y . (2.20)

With α = −β = −T , x = L, and y = L+
L , (2.20) reproduces (2.18).

2.3 The action of B/L and its geometric interpretation

We are now ready to solve the equation for Ψ(2). The state Ψ(1) satisfies

QBΨ(1) = 0 , BΨ(1) = 0 , LΨ(1) = 0 . (2.21)

We will use correlators in the sliver frame to represent states made of wedge states and

operator insertions. The state Ψ(1) can be described as follows:

〈φ,Ψ(1) 〉 = 〈 f ◦ φ(0) cV (1) 〉W1 . (2.22)

Note that cV is a primary field of dimension zero so that there is no associated conformal

factor. Here and in what follows we use φ to denote a generic state in the Fock space and

φ(0) to denote its corresponding operator. The surface Wα is the one associated with the

wedge state Wα in the sliver conformal frame. We use the doubling trick in calculating

correlators. We define the oriented straight lines V ±
α by

V ±
α =

{
z

∣∣∣Re(z) = ± 1

2
(1 + α)

}
,

orientation : ± 1

2
(1 + α) − i∞ → ± 1

2
(1 + α) + i∞ .

(2.23)

The surface Wα can be represented as the region between V −
0 and V +

2α, where V −
0 and V +

2α

are identified by translation.

A formal solution to the equation QBΨ(2) = −Ψ(1) ∗ Ψ(1) is

Ψ(2) = −
∫ ∞

0
dT Be−TL

[
Ψ(1) ∗ Ψ(1)

]
. (2.24)

– 6 –



J
H
E
P
0
1
(
2
0
0
8
)
0
2
8

By construction, BΨ(2) = 0. Using the identities (2.15) and (2.13), we have

Ψ(2) = −
∫ ∞

0
dT

[
B e−TL Ψ(1) ∗ e−T (L−L+

L ) Ψ(1) − e−TL Ψ(1) ∗ (B − B+
L ) e−T (L−L+

L ) Ψ(1)
]

.

(2.25)

Because of the properties of Ψ(1) in (2.21), the first term vanishes and the second reduces to

Ψ(2) =

∫ ∞

0
dT Ψ(1) ∗ (B − B+

L ) e−T (L−L+
L ) Ψ(1) . (2.26)

We further use the identity (2.18) together with LΨ(1) = 0 to find

Ψ(2) =

∫ ∞

0
dT Ψ(1) ∗ (B − B+

L ) e(1−e−T )L+
L Ψ(1) . (2.27)

It follows from [B,L+
L ] = B+

L that [B, g(L+
L ) ] = B+

L g′(L+
L ) for any analytic function g.

Using this formula with BΨ(1) = 0 , we find

Ψ(2) = −
∫ ∞

0
dT e−T Ψ(1) ∗ e(1−e−T )L+

L B+
L Ψ(1) . (2.28)

Using the change of variables t = e−T , we obtain the following final expression of Ψ(2):

Ψ(2) =

∫ 1

0
dt Ψ(1) ∗ e−(t−1)L+

L (−B+
L )Ψ(1) . (2.29)

There is a simple geometric picture for Ψ(2). Let us represent 〈φ,Ψ(2) 〉 in the CFT

formulation. The exponential action of L+
L on a generic string field A can be written as

e−αL+
L A = e−αL+

L (I ∗ A) = e−αL+
LI ∗ A = Wα ∗ A . (2.30)

Here we have recalled the familiar expression of the wedge state Wα = e−
α
2

L+I =

e−αL+
LI [4], where I is the identity string field. We thus learn that e−αL+

L with α > 0

creates a semi-infinite strip with a width of α in the sliver frame, while e−αL+
L with α < 0

deletes a semi-infinite strip with a width of |α|. The inner product 〈φ,Ψ(2) 〉 is thus repre-

sented by a correlator on W2−|t−1| = W1+t. In other words, the integrand in (2.29) is made

of the wedge state W1+t with operator insertions. The state φ is represented by the region

between V −
0 and V +

0 with the operator insertion f◦φ(0) at the origin. The left factor of Ψ(1)

in (2.29) can be represented by the region between V +
0 and V +

2 with an insertion of cV at

z = 1. For t = 1 the right factor of Ψ(1) can be represented by the region between V +
2 and

V +
4 with an insertion of cV at z = 2. For 0 < t < 1, the region is shifted to the one between

V +
2−2|t−1| = V +

2t and V +
4−2|t−1| = V +

2+2t, and the insertion of cV is at z = 2 − |t − 1| = 1 + t.

Finally, the operator (−B+
L ) is represented by an insertion of B [8] defined by

B =

∫
dz

2πi
b(z) , (2.31)

where the contour of the integral can be taken to be −V +
α with 1 < α < 1+2t. We thus have

〈φ,Ψ(2) 〉 =

∫ 1

0
dt 〈 f ◦ φ(0) cV (1)B cV (1 + t) 〉W1+t . (2.32)
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As t → 0 the pair of cV ’s collide, and at t = 1 they attain the maximum separation.

The state Ψ(2) should formally solve the equation of motion by construction. Let us

examine the BRST transformation of Ψ(2) more carefully based on the expression (2.32).

The BRST operator in 〈φ,QBΨ 〉 can be represented as an integral of the BRST current

on V +
2(1+t) − V +

0 :2

〈φ,QBΨ(2) 〉 =

∫ 1

0
dt

〈
f ◦ φ(0)

∫

−V
+
0

+V
+
2(1+t)

dz

2πi
jB(z) cV (1)B cV (1 + t)

〉

W1+t

, (2.33)

where jB is the BRST current. Since cV is BRST closed, the only nontrivial action of the

BRST operator is to change the insertion of the antighost to that of the energy-momentum

tensor:

〈φ,QBΨ(2) 〉 = −
∫ 1

0
dt 〈 f ◦ φ(0) cV (1)L cV (1 + t) 〉W1+t , (2.34)

where

L =

∫
dz

2πi
T (z) , (2.35)

and the contour of the integral can be taken to be −V +
α with 1 < α < 1 + 2t. The minus

sign on the right-hand side of (2.34) is from anticommuting the BRST current with the

left cV . Since ∂t e−tL+
L = −L+

L e−tL+
L and −L+

L corresponds to L in the correlator, an

insertion of L is equivalent to taking a derivative with respect to t [5]. We thus find

〈φ,QBΨ(2) 〉 = −
∫ 1

0
dt

∂

∂t
〈 f ◦ φ(0) cV (1) cV (1 + t) 〉W1+t . (2.36)

The surface term from t = 1 gives −Ψ(1) ∗ Ψ(1). The equation of motion is therefore

satisfied if the surface term from t = 0 vanishes. The surface term from t = 0 vanishes if

lim
t→0

cV (0) cV (t) = 0 . (2.37)

Therefore, Ψ(2) defined by (2.32) does solve the equation QBΨ(2) + Ψ(1) ∗ Ψ(1) = 0 when

V satisfies (2.37). Since Ψ(1) ∗ Ψ(1) is a finite state, the equation guarantees that QBΨ(2)

is also finite. However, it is still possible that Ψ(2) has a divergent term which is BRST

closed. The ghost part of Ψ(2) is finite since it is given by an integral of ψt over t from

t = 0 to t = 1, where ψn is the key ingredient in the tachyon vacuum solution [4]:

〈φ,ψn 〉 = 〈 f ◦ φ(0) c(1)B c(1 + n) 〉W1+n , (2.38)

and the contour of the integral for B can be taken to be −Vα with 1 < α < 2n + 1 . When

the operator product of V with itself is regular, the condition (2.37) is satisfied and Ψ(2)

2To derive this we first use the relation 〈φ,QBΨ(2) 〉 = −(−1)φ 〈QBφ, Ψ(2) 〉, where QB on the right-

hand side is an integral of the BRST current jB over a contour that encircles the origin counterclockwise,

with the operator jB placed to the left of f ◦ φ(0) in the correlator. Using the identification of the surface

W1+t, the contour can be deformed to −V +
2(1+t) + V +

0 . In the correlator, we move the BRST current from

the left of f ◦ φ(0) to the right of it. This cancels (−1)φ, and the additional minus sign is canceled by

reversing the orientation of the contour.
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itself is finite. Note that V (0)V (t) in the limit t → 0 can be finite or can be vanishing. We

construct Ψ(n) for marginal operators with regular operator products in the next section.

When the operator product of V with itself is singular, the formal solution Ψ(2) is not

well defined. We discuss this case in section 4.

3. Solutions for marginal operators with regular operator products

In the previous section we constructed a well-defined solution to the equation QBΨ(2) +

Ψ(1) ∗ Ψ(1) = 0 when V has a regular operator product. In this section we generalize it to

Ψ(n) for any n. We then present the solution that corresponds to the decay of an unstable

D-brane in section 3.2. In section 3.3 we study marginal deformations in the lightcone

direction and discuss the application to the solution that represents a string ending on a

D-brane.

3.1 Solution

Once we understand how Ψ(2) in the form of (2.32) satisfies the equation of motion, it is

easy to construct Ψ(n) satisfying QBΨ(n) = Φ(n). It is given by

〈φ,Ψ(n) 〉 =

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1 〈 f ◦ φ(0) cV (1)B cV (1 + t1)B cV (1 + t1 + t2) . . .

×B cV (1 + t1 + t2 + · · · + tn−1) 〉W1+t1+t2+···+tn−1
.

(3.1)

Introducing the length parameters

ℓi ≡
i∑

k=1

tk , (3.2)

the solution can be written more compactly as

〈φ,Ψ(n) 〉 =

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

〈
f ◦ φ(0) cV (1)

n−1∏

i=1

[
B cV (1 + ℓi)

] 〉

W1+ℓn−1

.

(3.3)

See figure 1. The solution obeys the Schnabl gauge condition. It is remarkably simple

contrasted with the expression one would obtain in Siegel gauge.

Let us now prove that the equation of motion is satisfied for (3.3). It is straightforward

to generalize the calculation of 〈φ,QBΨ(2) 〉 in the previous section to that of 〈φ,QBΨ(n) 〉 .

The BRST operator in 〈φ,QBΨ(n) 〉 can be represented as an integral of the BRST current

on V +
2(1+ℓn−1) − V +

0 . Since cV is BRST closed, the BRST operator acts only on the

insertions of B’s:

〈φ,QBΨ(n) 〉 = −
n−1∑

j=1

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

〈
f ◦ φ(0) cV (1)

j−1∏

i=1

[
B cV (1 + ℓi)

]

×L cV (1 + ℓj)

n−1∏

k=j+1

[
B cV (1 + ℓk)

]〉

W1+ℓn−1

.

(3.4)
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Figure 1: The surface W1+ℓn−1
with the operator insertions used to construct the solution Ψ(n)

given in (3.3). The parameters t1, t2, . . . , tn−1 must all be integrated from zero to one. The leftmost

and rightmost vertical lines with double arrows are identified.

An insertion of L between cV (1 + ℓj−1) and cV (1 + ℓj) corresponds to taking a derivative

with respect to tj. When operator products of V are regular, we have

〈φ,QBΨ(n) 〉 = −
n−1∑

j=1

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1 ∂tj

〈
f ◦ φ(0) cV (1)

j−1∏

i=1

[
B cV (1 + ℓi)

]

× cV (1 + ℓj)

n−1∏

k=j+1

[
B cV (1 + ℓk)

] 〉

W1+ℓn−1

= −
n−1∑

j=1

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtj−1

∫ 1

0
dtj+1 . . .

∫ 1

0
dtn−1

〈
f ◦ φ(0) cV (1)

×
j−1∏

i=1

[
B cV (1 + ℓi)

]
cV (1 + ℓj)

n−1∏

k=j+1

[
B cV (1 + ℓk)

]〉

W1+ℓn−1

∣∣∣∣
tj=1

= −
n−1∑

j=1

〈φ,Ψ(j) ∗ Ψ(n−j) 〉 .

(3.5)

The equation of motion is thus satisfied.3

We can also derive this expression of Ψ(n) by acting with B/L on Φ(n). It is in fact

interesting to see how the region of the integrals over t1, t2, . . . , tn−1 is reproduced. Let us

demonstrate it taking the case of Ψ(3) as an example. Using the Schwinger representation

3We assume that operator products of more than two V ’s are also regular in order for the surface term

from tj = 0 to vanish. This additional regularity condition was overlooked in the first version of the paper

on arXiv.
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of B/L, the expression (2.26) for Ψ(2), and the identities (2.15) and (2.14), we have

Ψ(3) = −
∫ ∞

0
dT2 B e−T2L

[
Ψ(1) ∗ Ψ(2) + Ψ(2) ∗ Ψ(1)

]

= −
∫ ∞

0
dT2

∫ ∞

0
dT1 B e−T2L

[
Ψ(1) ∗ Ψ(1) ∗ (B − B+

L ) e−T1(L−L+
L ) Ψ(1)

+ Ψ(1) ∗ (B − B+
L ) e−T1(L−L+

L
) Ψ(1) ∗ Ψ(1)

]

=

∫ ∞

0
dT1

∫ ∞

0
dT2

[
Ψ(1) ∗ (B − B+

L ) e−T2(L−L+
L ) Ψ(1) ∗ (B − B+

L ) e−(T1+T2)(L−L+
L ) Ψ(1)

+ Ψ(1)∗(B−B+
L )e−(T1+T2)(L−L+

L )Ψ(1)∗(B−B+
L )e−T2(L−L+

L )Ψ(1)

]
.

(3.6)

By changing variables as τ1 = T2 and τ2 = T1 + T2 for the first term and as τ2 = T2 and

τ1 = T1 + T2 for the second term, the two terms combine into

Ψ(3) =

∫ ∞

0
dτ1

∫ ∞

0
dτ2 Ψ(1) ∗ (B −B+

L ) e−τ1(L−L+
L ) Ψ(1) ∗ (B −B+

L ) e−τ2(L−L+
L ) Ψ(1) . (3.7)

The same manipulations we performed with Ψ(2) give

Ψ(3) =

∫ 1

0
dt1

∫ 1

0
dt2 Ψ(1) ∗ e−(t1−1)L+

L (−B+
L )Ψ(1) ∗ e−(t2−1)L+

L (−B+
L )Ψ(1) (3.8)

and the following expression in the CFT formulation:

〈φ,Ψ(3) 〉 =

∫ 1

0
dt1

∫ 1

0
dt2 〈 f ◦ φ(0) cV (1)B cV (1 + t1)B cV (1 + t1 + t2) 〉W1+t1+t2

(3.9)

in agreement with (3.3). It is not difficult to use induction to prove that for all n (3.3)

follows from the action of B/L on Φ(n).

We conclude the subsection by writing other forms of the solution that are suitable for

explicit calculations. We represent the surface Wα as the region between V −
2 and V +

2(α−1).

The operator cV (1 + ℓn−1) in (3.3) is then mapped to cV (−1). We further transform

〈φ,Ψ(n+1) 〉 in the following way:

〈φ,Ψ(n+1) 〉 =

∫ 1

0
dt1 . . .

∫ 1

0
dtn

〈
cV (−1) f ◦ φ(0) cV (1)

n−1∏

i=1

[
B cV (1 + ℓi)

]
B

〉

W1+ℓn

=

∫ 1

0
dt1 . . .

∫ 1

0
dtn

〈
cV (−1) f ◦ φ(0) cV (1)

n−1∏

i=1

[
V (1 + ℓi)

]
B

〉

W1+ℓn

= −
∫ 1

0
dt1 . . .

∫ 1

0
dtn

1

2 + ℓn

×
〈 ∫

V +
2ℓn

−V −
2

dz

2πi
z b(z)

[
cV (−1) f ◦φ(0) cV (1)

] n−1∏

i=1

[
V (1+ℓi)

]〉

W1+ℓn

.

(3.10)
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First we recursively used the relation B c(z)B = B , which follows from {B, c(z) } = 1 and

B2 = 0 . In the last step, we used the identity
∫

V +
2(α−1)

−V −
2

dz

2πi
z b(z) = (α + 1)

∫

V +
2(α−1)

dz

2πi
b(z) on Wα . (3.11)

This follows from∫

V −
2

dz−
2πi

z− b(z−) =

∫

V +
2(α−1)

dz+

2πi

{
z+ − (α + 1)

}
b(z+) on Wα , (3.12)

where the coordinate z− for V −
2 and the coordinate z+ for V +

2(α−1) are identified by z+ =

z− + α + 1 . The contour V +
2ℓn

− V −
2 can be deformed to encircle cV (−1), f ◦ φ(0), and

cV (1), and we obtain

〈φ,Ψ(n+1) 〉 =

∫ 1

0
dt1 . . .

∫ 1

0
dtn

1

2 + ℓn

〈 {
V (−1) f ◦ φ(0) cV (1) + cV (−1) f ◦ φ(0)V (1)

+ cV (−1)

[ ∮
dz

2πi
z b(z) f ◦φ(0)

]
cV (1)

} n−1∏

i=1

V (1+ℓi)

〉

W1+ℓn

,

(3.13)

where the contour in the last line encircles the origin counterclockwise.

When φ(0) factorizes into a matter part φm(0) and a ghost part φg(0), we can use the

matter-ghost factorization of the correlator to give an alternative form of (3.3):

〈φ,Ψ(n) 〉 =

∫ 1

0
dt1

∫ 1

0
dt2 . . .

∫ 1

0
dtn−1

〈
f ◦ φm(0)

n−1∏

i=0

V (1 + ℓi)
〉
W1+ℓn−1

, m

×
〈

f ◦ φg(0) c(1)B c(1 + ℓn−1)
〉
W1+ℓn−1

, g
,

(3.14)

where ℓ0 ≡ 0 and we denoted matter and ghost correlators by subscripts m and g, respec-

tively. The ghost correlator in the above expression is 〈φg, ψℓn−1 〉 in (2.38). The algorithm

for its calculation has been developed in [4, 8].

3.2 Rolling tachyon marginal deformation to all orders

We can now apply the general solution (3.13) to the special case of a marginal deformation

corresponding to a rolling tachyon. For this purpose we pick the operator

V (z, z̄) = e
1√
α′ X

0(z,z̄)
(3.15)

restricted to the boundary z = z̄ = y of the upper-half plane H, where we write it as4

V (y) = e
1√
α′ X

0(y)
, X0(y) ≡ X0(y, y) . (3.16)

4We use the signature (−,+, +, . . . , +). For a point z = z̄ = y on the boundary of H we write Xµ(y) ≡
Xµ(y, y). The singular part of Xµ(y)Xν(y′) is given by −2α′ηµν ln |y − y′|, and the mode expansion for

a Neumann coordinate reads i∂yXµ(y) =
√

2α′
P

m

αµ

m

ym+1 . The basic correlator is 〈eik·X(y)eik′·X(y′)〉 =

(2π)Dδ(D)(k + k′)|y − y′|2α′k·k′

, where D is the spacetime dimension. The operator eik·X(y) has dimension

α′k2 and transforms as f ◦ eik·X(y) = | df

dy
|α′k2

eik·X(f(y)). We do not use the doubling trick for the matter

sector in section 3.2 and section 3.3. In these subsections, ∂Xµ ≡ ∂zXµ +∂z̄X
µ when µ is a direction along

the D-brane and ∂Xµ ≡ ∂zX
µ − ∂z̄X

µ when µ is a direction transverse to the D-brane.
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The operator eik·X(y) has dimension α′k2 and we can write

V (y) = eik·X(y) with kµ =
i√
α′

(
1,~0

)
→ α′k2 = 1 , (3.17)

showing that V is a matter primary field of dimension one. We also have

V (y)V (0) ∼ |y|2V (0)2 , (3.18)

and the matter operator satisfies the requisite regularity condition.

We will also use exponential operators of X0 with different exponents. We thus record

the following transformation law and ordering results:

f ◦ e
1√
α′ nX0(y)

=
∣∣∣
df

dy

∣∣∣
n2

e
1√
α′ nX0(f(y))

, (3.19)

e
1√
α′ mX0(y)

e
1√
α′ nX0(y′)

= |y − y′|2mn : e
1√
α′ mX0(y)

e
1√
α′ nX0(y′)

: . (3.20)

Physically, deformation by cV represents a rolling tachyon solution in which the state

of the system at time x0 = −∞ is the perturbative vacuum. We set Ψ(1) to be

Ψ(1) = e
1√
α′ X

0(0)
c1|0〉 (3.21)

and calculate Ψ(n) with n ≥ 2 which, by momentum conservation, must take the form

Ψ(n) = e
1√
α′ nX0(0)

[
βn c1|0〉 + · · ·

]
, n ≥ 2 . (3.22)

In the above we have separated out the tachyon component, and higher-level fields are

indicated by dots. The profile of the tachyon field T is determined by the coefficients βn

that we aim to calculate:

T (x0) = λ e
1√
α′ x

0

+
∞∑

n=2

βn λne
1√
α′ nx0

. (3.23)

Since the solution (for every component field) depends on λ and x0 only through the

combination λe
1√
α′ x

0

, a scaling of λ can be absorbed by a shift of x0. We can therefore

focus on the case λ = ∓1. The sign of λ makes a physical difference. In our conventions

the tachyon vacuum lies at some T < 0, so λ = −1 corresponds to the tachyon rolling

in the direction of the tachyon vacuum, which we are mostly interested in. For λ = +1

the tachyon begins to roll towards the unbounded region of the potential. After setting

λ = ∓1, we write

T (x0) = ∓ e
1√
α′ x

0

+
∞∑

n=2

(∓1)nβn e
1√
α′ nx0

. (3.24)

In order to extract the coefficients βn from the solution we introduce test states φn

and their BPZ duals:

|φn〉 = e
− 1√

α′ nX0(0)
c0c1|0〉 , 〈φn| = lim

y→∞
〈0|c−1c0e

− 1√
α′ nX0(y) 1

|y|2n2 . (3.25)
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The state φn has dimension n2 − 1. Using (3.22) we find

〈φn,Ψ(n)〉 = 〈φn|Ψ(n)〉 = βn · (vol) , vol = (2π)Dδ(D)(0) . (3.26)

The spacetime volume (vol) always factors out, so we will simply use vol= 1 in the following.

We now use (3.13) to write βn+1 = 〈φn+1,Ψ
(n+1)〉 as

βn+1 =

∫ 1

0
dt1 . . .

∫ 1

0
dtn

1

2 + ℓn

〈 {
e

1√
α′ X

0(−1)
f ◦ (∂c)ce

− 1√
α′ (n+1)X0

(0) ce
1√
α′ X

0

(1)

+ ce
1√
α′ X

0

(−1) f ◦ (∂c)ce
− 1√

α′ (n+1)X0

(0) e
1√
α′ X

0(1)

+ ce
1√
α′ X

0

(−1) f ◦ ce
− 1√

α′ (n+1)X0

(0) ce
1√
α′ X

0

(1)

} n−1∏

i=1

e
1√
α′ X

0(1+ℓi)
〉

W1+ℓn

.

(3.27)

In the last term, due to the simple structure of φn+1, the antighost line integral acts as b0

and simply removes the c0 part of the state. We must now evaluate the correlator on the

right-hand side.

This calculation requires the map from the surface W1+ℓn to the upper-half plane.

We recall that the surface W0 of unit width can be mapped to the upper-half plane by

the function

g(z) =
1

2
tan(πz) . (3.28)

Due to the periodicity g(z + 1) = g(z), this map works independent of the position of

the surface W0 in the direction of the real axis. Consequently, we merely need to rescale

W1+ℓn to W0 by z → z
2+ℓn

and then map it to the upper-half plane by g(z). The overall

conformal transformation on the test states is therefore the map h given by

h(ξ) ≡ g
( 1

2 + ℓn
f(ξ)

)
. (3.29)

All other vertex operators are mapped with g
(

1
2+ℓn

z
)
. It is therefore natural to define

gi ≡ g
( 1 + ℓi

2 + ℓn

)
, g′i ≡ g′

( 1 + ℓi

2 + ℓn

)
, i = 0, 1, . . . , n , ℓ0 ≡ 0 . (3.30)

With these abbreviations, the correlator on the upper-half plane reads

βn+1 =

∫
dnt

h′(0)(n+1)2−1

2 + ℓn

〈{
g′0

2 + ℓn

(
e

1√
α′ X

0(−g0) (∂c)ce
− 1√

α′ (n+1)X0

(0) ce
1√
α′ X

0

(g0)

+ ce
1√
α′ X

0

(−g0) (∂c)ce
− 1√

α′ (n+1)X0

(0) e
1√
α′ X

0(g0)
)

+ ce
1√
α′ X

0

(−g0) ce
− 1√

α′ (n+1)X0

(0) ce
1√
α′ X

0

(g0)

} n−1∏

i=1

g′i
2 + ℓn

e
1√
α′ X

0(gi)
〉

H

,

(3.31)
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where h′(0) = 1
2+ℓn

and we have defined
∫

dnt ≡
∫ 1
0 dt1 . . .

∫ 1
0 dtn. We can now factor this

into matter and ghost correlators:

βn+1 =

∫
dnt (2+ℓn)−(n+1)2

〈
e

1√
α′ X

0(−g0)
e
− 1√

α′ (n+1)X0(0)
e

1√
α′ X

0(g0)
n−1∏

i=1

g′i
2+ℓn

e
1√
α′ X

0(gi)
〉

m

×
〈

g′0
2 + ℓn

(
(∂c)c(0) c(g0) + c(−g0) (∂c)c(0)

)
+ c(−g0) c(0) c(g0)

〉

g

.

(3.32)

The ghost correlator can be evaluated using
〈
c(−z)c(0)c(z)

〉
g

= −2z3 and〈
∂c c(0) c(z)

〉
g

= z2. Using also −g0 = gn and g′0 = g′n, we find

βn+1 = 2

∫
dnt (2+ℓn)−n(n+3)

( g′0
2 + ℓn

−g0

) g2
0

g′0
2

n∏

i=0

[
g′i

]〈
e
− 1√

α′ (n+1)X0(0)
n∏

i=0

e
1√
α′ X(gi)

〉
m

.

(3.33)

Evaluating the matter correlator, we obtain our final result for the coefficients of the

rolling tachyon solution:

βn+1 = 2

∫
dnt (2 + ℓn)−n(n+3)

( g′0
2 + ℓn

− g0

) g2
0

g′0
2

[ n∏

i=0

g′i
g
2(n+1)
i

] ∏

0≤i<j≤n

(
gi − gj

)2
. (3.34)

Another way to derive (3.34) is to use (3.14). The ghost correlator, which gives the

tachyon coefficient of ψℓn , has been calculated in [4, 8]:

〈 f ◦ (∂c)c(0) c(1)B c(1 + ℓn) 〉W1+ℓn ,g =
2 + ℓn

π

[
1 − 2 + ℓn

2π
sin

2π

2 + ℓn

]
sin2 π

2 + ℓn

= 2 (2 + ℓn)
g2
0

g′0

(
1 − (2 + ℓn) g0

g′0

)
.

(3.35)

The calculation of the matter correlator is straightforward:
〈

f ◦ e
− 1√

α′ (n+1)X0(0)
n∏

i=0

e
1√
α′ X0(1+ℓi)

〉

W1+ℓn , m

=

(
2

π

)(n+1)2
[

n∏

i=0

(2 + ℓn)−2(n+1)

π−2(n+1)
sin−2(n+1) π(1 + ℓi)

2 + ℓn

]
∏

0≤i<j≤n

(2 + ℓn)2

π2
sin2 π(ℓi − ℓj)

2 + ℓn

= (2 + ℓn)−(n+1)(n+2)

[ n∏

i=0

g′i
g
2(n+1)
i

] ∏

0≤i<j≤n

(gi − gj)
2 .

(3.36)

It is easy to see that (3.34) is reproduced.

The integrand in (3.34) is manifestly positive since g′(z) > 0 and
g′0

2+ℓn
− g0 > 0. It

follows that all βn+1 coefficients are positive. For n = 1 we find

β2 = 8

∫ 1

0
dt

g′0
2+t

− g0

(2 + t)4g4
0

= 8

∫ 1

0
dt

(
2 cot

(
π

2+t

)

2 + t

)4
(

π

2(2 + t) cos2
(

π
2+t

) − 1

2
tan

( π

2 + t

))
.

(3.37)
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Surprisingly, analytic evaluation of the integral is possible using Mathematica:

β2 =
64

243
√

3
. (3.38)

This coefficient is the same as that of the Siegel-gauge solution [23]. For n = 2 the final

integral can be evaluated numerically:

β3 = 8

∫ 1

0
dt1

∫ 1

0
dt2

(
g′0

2+t1+t2
− g0

)
g′1

(
g2
0 − g2

1

)2

(2 + t1 + t2)10g
8
0g

6
1

≃ 2.14766 · 10−3 . (3.39)

The results for the first few βn are summarized in table 1. The resulting tachyon pro-

file (3.24) takes the form

T (x0) = ∓ e
1√
α′ x0

+ 0.15206 e
1√
α′ 2x0

∓ 2.148 · 10−3 e
1√
α′ 3x0

+ 2.619 · 10−6 e
1√
α′ 4x0

∓ 2.791 · 10−10 e
1√
α′ 5x0

+ 2.801 · 10−15 e
1√
α′ 6x0

∓ 2.729 · 10−21 e
1√
α′ 7x0

+ . . .

(3.40)

The top sign gives us the physical solution: the tachyon rolls towards the tachyon vacuum,

overshoots it, and then begins to develop larger and larger oscillations. The coefficients in

the solution decrease so rapidly that the series seems to be absolutely convergent for any

value of x0√
α′ . Indeed, the n-th term Tn in the above series appears to take the form

|Tn| ∼ 2.7 · 10− 1
2
n(n−1) e

1√
α′ nx0

. (3.41)

One then finds that the ratio of consecutive coefficients is
∣∣∣
Tn+1

Tn

∣∣∣ ∼ 10−ne
1√
α′ x0

≃ e−2.303 ne
1√
α′ x0

. (3.42)

For any value of x0√
α′ the ratio becomes smaller than one for sufficiently large n, suggesting

absolute convergence. It would be useful to do analytic estimates of βn using (3.34) to

confirm the above speculation.

It is interesting to compare the results with those of the p-adic model [19]. The relevant

solution is discussed in section 4.2.2 of that paper and has the same qualitative behavior

as the solution presented here: the tachyon rolls towards the minimum, overshoots it, and

then develops ever-growing oscillations. The solution is of the form

φ(t) = 1 −
∞∑

n=1

an e
√

2nt , a1 = 1 . (3.43)

The coefficients an can be calculated exactly with a simple recursion and fall off very

rapidly, but an analytic expression for their large n behavior is not known. A fit of the

values of an for n = 3, . . . , 13 gives ln an ≃ −0.1625 + 1.506n − 1.389n2. (A fit with an n3

term returns a very small coefficient for this term.) The fit implies that the ratio of two

consecutive terms in the solution is
∣∣∣
an+1

an

∣∣∣e
√

2 t ∼ e−2.778 n+0.117e
√

2 t ≃ 1.125 · 16−ne
√

2 t . (3.44)
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n βn

2 64
243

√
3
≈ 0.152059

3 2.14766 · 10−3

4 2.61925 · 10−6

5 2.79123 · 10−10

6 2.80109 · 10−15

7 2.72865 · 10−21

Table 1: Numerical values of the rolling tachyon profile coefficients.

This result suggests that the p-adic rolling solution is also absolutely convergent.

A low-level solution of the string theory rolling tachyon in Siegel gauge was also ob-

tained in [19], where significant similarities with the p-adic solution were noted. The

higher-level Siegel gauge analysis of the rolling tachyon in [23] confirmed the earlier analy-

sis and added much confidence to the validity of the oscillatory solution. We believe that

the exact analytic solution presented here has settled the issue convincingly.

3.3 Lightcone-like deformations

Another simple example of a marginal operator with regular operator products is provided

by the lightcone-like operator

V (z) =
i√
2α′ ∂X+ , (3.45)

as usual, inserted at z = z̄ = y. Here X+ = 1√
2
(X0 + X1) is a lightcone coordinate.

(We could have also chosen X− = 1√
2
(X0 − X1).) The OPE of V with itself is regular:

limz→0 V (z)V (0) = V (0)2. The operator is dimension one and cV is BRST closed. We

can construct a solution using the above V (z) and our general result (3.13). If we consider

some Dp-brane with p < D − 1, we can choose x1 to be a direction normal to the brane

and the above matter deformation corresponds to giving constant expectation values to

the time component of the gauge field on the brane and to the scalar field on the brane

that represents the position of the brane.

To make the analysis a bit more nontrivial we consider the discussion of Michishita [25]

on the Callan-Maldacena solution [26] for a string ending on a brane in the framework of

OSFT. We choose

V (y) =

∫
dki A(ki)

i√
2α′ ∂X+eikiX

i

(y) , (3.46)

where Xi’s are the spatial directions on the brane. This operator has regular operator

products: the exponentials eikiX
i
(y) give positive powers of distances since ki is spacelike.

The operator c∂X+eikiX
i
, however, has dimension α′k2, so unless ki = 0 it is not BRST
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closed and the expression in (3.13) does not provide a solution. But it is not too far from

a solution: if one chooses A(k) ∼ 1/k2, the action of QB on cV gives a delta function in

position space.

We thus take Ψ
(1)
A = V (0)c1|0〉 and, following [25], take its failure to be annihilated by

QB to define the source term J (1) that hopefully would arise independently in a complete

theory: QBΨ
(1)
A = J (1). We can then calculate Ψ

(2)
A which satisfies QBΨ

(2)
A + Ψ

(1)
A ∗ Ψ

(1)
A =

J (2) for some J (2). While BJ (1) 6= 0, we demand BJ (n) = 0 for n ≥ 2 following the

approach of [25] in the Siegel-gauge case. Acting with B on the above equation for Ψ
(2)
A ,

we find

LΨ
(2)
A + B

(
Ψ

(1)
A ∗ Ψ

(1)
A

)
= 0 → Ψ

(2)
A = −B

L

(
Ψ

(1)
A ∗ Ψ

(1)
A

)
. (3.47)

Acting with QB on the solution, one confirms that

QBΨ
(2)
A = −Ψ

(1)
A ∗ Ψ

(1)
A +

B

L

(
J (1) ∗ Ψ

(1)
A − Ψ

(1)
A ∗ J (1)

)
(3.48)

so that the source term J (2) is indeed annihilated by B.

In calculating Ψ
(2)
A in (3.47) with LΨ

(1)
A 6= 0, we need to generalize our results in

section 2.3 and find the action of B/L on a string field product χ ∗ χ′ where χ and χ′ are

not annihilated by L but instead satisfy

Bχ = Bχ′ = 0 , Lχ = lχ χ , Lχ′ = lχ′ χ′ . (3.49)

The steps leading to (2.29) can be carried out analogously for this case with extra factors

depending on lχ and lχ′ :

B

L
(χ ∗ χ′) = (−1)χ

∫ 1

0
dt t(lχ+lχ′ ) χ ∗ e−(t−1)L+

L (−B+
L )χ′ . (3.50)

To construct Ψ
(2)
A , we need to express states of the type B

L
(χ ∗ χ′) as CFT correlators. As

χ and χ′ are primary fields of nonvanishing dimension, there are extra conformal factors

in the sliver-frame expression for these states. Defining a shift function sl(z) = z + l, we

can express the generalization of (2.32) that accounts for these extra factors as

〈φ,
B

L

(
χ ∗ χ′) 〉 = (−1)χ

∫ 1

0
dt t(lχ+lχ′) 〈 f ◦ φ(0) s1 ◦ f ◦ χ(0) B s1+t ◦ f ◦ χ′(0) 〉W1+t

= (−1)χ
∫ 1

0
dt

(
tf ′(0)

)(lχ+lχ′) 〈 f ◦ φ(0) χ(1) B χ′(1 + t) 〉W1+t .

(3.51)

Here we have explicitly carried out the conformal maps of χ and χ′ to the sliver frame

and used s′l(z) = 1. It is now straightforward to carry out the construction of Ψ
(2)
A by
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generalizing (3.13). This yields

〈φ,Ψ
(2)
A 〉 =

∫
dkidk′

iA(ki)A(k′
i)

×
∫ 1

0
dt

−
(
tf ′(0)

)α′(k2+k′2)

(2 + t)2α′

〈 {
∂X+eikiX

i

(−1) f ◦ φ(0) c∂X+eik′
iX

i

(1)

+ c∂X+eikiX
i

(−1)

[∮
dz

2πi
zb(z)f ◦ φ(0)

]
c∂X+eik′

iX
i

(1)

+ c∂X+eik′
iX

i

(−1) f ◦ φ(0) ∂X+eikiX
i

(1)

} 〉

W1+t

.

(3.52)

To obtain a Fock-space expression of Ψ
(2)
A , we follow the same steps leading to (5.50) of [8].

The map we need to perform on the correlator is I ◦ g, so the total map on the test state

φ is I ◦ h. Here we have used g and h defined in (3.28) and (3.29), and I(z) = −1
z
. Let us

further define

B̂ =

∮
dz

2πi

g−1(z)

(g−1)′(z)
b(z). (3.53)

Then we can start by mapping the correlator to the upper-half plane through g. Again,

we will suppress all arguments of g and abbreviate

g ≡ g
( 1

2 + t

)
= −g

(
− 1

2 + t

)
, g′ ≡ g′

( 1

2 + t

)
= g′

(
− 1

2 + t

)
. (3.54)

We find

〈φ,Ψ
(2)
A 〉 =

∫
dkidk′

iA(ki)A(k′
i)

∫ 1

0
dt

−1

(2 + t)2α′

(tf ′(0)g′

2 + t

)α′(k2+k′2)

×
〈

g′

2 + t

{
∂X+eikiX

i

(−g)h ◦ φ(0) c∂X+eik′
iX

i

(g)

+ c∂X+eik′
iX

i

(−g)h ◦ φ(0) ∂X+eikiX
i

(g)

}

+ c∂X+eikiX
i

(−g)
[
B̂ h ◦ φ(0)

]
c∂X+eik′

iX
i

(g)

〉

H

.

(3.55)

Here we used the fact that the operator c∂X+eikiX
i

has conformal dimension α′k2. We

notice that the two terms in parenthesis can be transformed into each other through the

map g → −g. Therefore, we can drop one of them and simply take the g-even part of the

other. We can now perform the remaining transformation with I to obtain an operator
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expression for Ψ
(2)
A :

Ψ
(2)
A =

∫
dkidk′

i A(ki)A(k′
i)

∫ 1

0
dt

−1

(2 + t)2α′

( tf ′(0)g′

(2 + t)g2

)α′(k2+k′2)

× U⋆
h

[{
2g′

(2 + t)g2
∂X+eikiX

i(−1/g
)
c∂X+eik′

iX
i(

1/g
)}

g-even

+ B̂⋆ c∂X+eikiX
i(−1/g

)
c∂X+eik′

iX
i(

1/g
) ]

|0〉

≡
∫

dkidk′
i A(ki)A(k′

i)Ψ
(2)
k,k′ .

(3.56)

We would now like to determine the level expansion of Ψ
(2)
A , or equivalently, of its momen-

tum decomposition Ψ
(2)
k,k′. We can either attempt a direct level expansion of the operator

result (3.56) or use the test state formalism that we carried out in section 3.2. It is straight-

forward to carry out the first method for the case of vanishing momentum k = k′ = 0, so

we will start with this approach. We will then use the test state method to find the level

expansion with full momentum dependence.

Let us start by the level expansion of Ψ
(2)
k,k′ in (3.56). We use the results in section 6.1

of [8] to obtain the following useful expansions:

B̂⋆ = b0 +
8

3
b−2 + . . . , U⋆

h = (2 + t)−L0 + . . . (3.57)

Here the dots denote higher-level corrections. We notice that self-contractions of ∂X+

vanish as η++ = 0. We end up with the following mode expansions for the matter and

ghost fields:

− 1

2α′ ∂X+(−1/g)∂X+(1/g)|0〉 =
∑

i<0,j<0

(−1)i+1(α+
i α+

j )gi+j+2|0〉 ,

c(±1/g) =
∞∑

m=−∞
cm

(
±g

)m−1
, ∂c(±1/g) = −

∞∑

m=−∞
(m − 1)cm

(
±g

)m
.

(3.58)

The leading term in the level expansion of Ψ
(2)
(k,k′) in (3.56) for k = k′ = 0 is given by

∫ 1

0
dt(2 + t)−L0−1

[
2g′

(2 + t)g2
(α+

−1)
2c1 − b0(α

+
−1)

2 2

g
c0c1

]
|0〉

= 2

∫ 1

0
dt

g′

2+t
− g

(2 + t)2g2
(α+

−1)
2c1|0〉 =

4

3
√

3
(α+

−1)
2c1|0〉 .

(3.59)

The above component of the solution is exact to all orders in λ, as it cannot receive contribu-

tions from Ψ(n) with n > 2. The coefficient was determined analytically using Mathematica.

Let us now use the test state approach to determine this coefficient for general k and

k′. In other words, we are trying to determine βk,k′ in

Ψ
(2)
k,k′ = βk,k′ei(ki+k′

i)X
i(0)(α+

−1)
2c1|0〉 + . . . (3.60)
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As always, the dots denote higher-level contributions. The appropriate test state φk,k′ such

that 〈φk,k′ ,Ψ
(2)
k,k′〉 = βk,k′ · (vol) and its BPZ conjugate are given by

|φk,k′〉 =
1

2
e−i(ki+k′

i)X
i(0) (α−

−1)
2c0c1|0〉 =

1

2

(−1

2α′

)
(∂c)c∂X−∂X−e−i(ki+k′

i)X
i

(0) |0〉 ,

〈φk,k′ | =
1

2
lim

y→∞
〈0|(α−

1 )2c−1c0e
−i(ki+k′

i)X
i(y) 1

|y|2α′(k+k′)2
.

(3.61)

The state φk,k′ has dimension α′(k+k′)2+1. We can now evaluate βk,k′ as in the calculation

of βn+1 in section 3.2:

βk,k′ =

∫ 1

0
dt

−1

(2 + t)2α′

(
tf ′(0)g′

2 + t

)α′(k2+k′2)

×
〈

g′

2 + t

{
∂X+eikiX

i

(−g)h ◦ φk,k′(0)c∂X+eik′
iX

i

(g)

+ c∂X+eikiX
i

(−g)h ◦ φk,k′(0)∂X+eik′
iX

i

(g)

}

+ c∂X+eikiX
i

(−g)
[
B̂ h ◦ φk,k′(0)

]
c∂X+eik′

iX
i

(g)

〉

H

=
1

2

(
1

2α′

)2 ∫ 1

0
dt

h′(0)α
′(k+k′)2+1

2 + t

(
tf ′(0)g′

2 + t

)α′(k2+k′2)

×
〈
∂X+eikiX

i

(−g) ∂X−∂X−e−i(ki+k′
i)X

i

(0) ∂X+eik′
iX

i

(g)
〉

m

×
〈 g′

2 + t
((∂c)c(0) c(g) + c(−g) (∂c)c(0)) + c(−g) c(0) c(g)

〉
g
,

(3.62)

where we have again factored the correlator into the matter and ghost sectors. The matter

contribution vanishes unless each ∂X+ contracts with ∂X−, and the ghost correlator has

been calculated in section 3.2. We therefore have

βk,k′ =

(
1

2α′

)2 ∫ 1

0
dt

h′(0)α
′(k+k′)2+1

2 + t

(
tf ′(0)g′

2 + t

)α′(k2+k′2)

2

(
g′

2 + t
− g

)
g2

×
〈
eikiX

i

(−g) e−i(ki+k′
i)X

i

(0) eik′
iX

i

(g)
〉

m

(
(2α′)η+−

g2

)2

.

(3.63)

We evaluate the remaining matter correlator and use h′(0) = 1
2+t

and f ′(0) = 2
π

to obtain

βk,k′ = 2

∫ 1

0
dt (2 + t)−α′(k+k′)2−2

(
2tg′

π(2 + t)

)α′(k2+k′2) (
g′

2 + t
− g

)
(2g)2α′k·k′

g2+2α′(k+k′)2
. (3.64)

For general momenta the integral is complicated, but for k = k′ = 0 we recover the result

from the operator expansion: βk=0,k′=0 = 4
3
√

3
. To summarize, our solution is

Ψ = λ

∫
dki A(ki)e

ikiX
i(0)α+

−1c1|0〉

+ λ2

(∫
dkidk′

i A(ki)A(k′
i)βk,k′ei(ki+k′

i)X
i(0)(α+

−1)
2c1|0〉 + . . .

)
+ O(λ3)

(3.65)
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with βk,k′ given in (3.64).

4. Solutions for marginal operators with singular operator products

In the previous section, we constructed analytic solutions for marginal deformations when

the operator V has regular operator products. In this section we generalize the construction

to the case where V has the following singular OPE with itself:

V (z)V (w) ∼ 1

(z − w)2
+ regular. (4.1)

4.1 Construction of Ψ(2)

The string field Ψ(2) in (2.32) is not well defined when V has the OPE (4.1). Let us define

a regularized string field Ψ
(2)
0 as follows:

〈φ,Ψ
(2)
0 〉 =

∫ 1

2ǫ

dt 〈 f ◦ φ(0) cV (1)B cV (1 + t) 〉W1+t . (4.2)

The equation of motion is no longer satisfied by Ψ
(2)
0 because the surface term at t = 2ǫ

in (2.36) is nonvanishing. The BRST transformation of Ψ
(2)
0 is given by

〈φ,QBΨ
(2)
0 〉 = − 〈φ,Ψ(1) ∗ Ψ(1) 〉 + 〈 f ◦ φ(0) cV (1) cV (1 + 2ǫ) 〉W1+2ǫ

, (4.3)

and we see that the second term on the right-hand side violates the equation of motion.

Using the OPE

cV (−ǫ) cV (ǫ) =
1

2ǫ
c∂c(0) + O(ǫ) , (4.4)

the term violating the equation of motion can be written as

〈 f ◦ φ(0) cV (1) cV (1 + 2ǫ) 〉W1+2ǫ
=

1

2ǫ
〈 f ◦ φ(0) c∂c(1 + ǫ) 〉W1+2ǫ

+ O(ǫ) . (4.5)

Since the operator c∂c is the BRST transformation of c, we recognize that the term (4.5)

is BRST exact up to contributions which vanish as ǫ → 0. This crucial property makes

it possible to satisfy the equation of motion by adding a counterterm to the regularized

string field Ψ
(2)
0 . We define the counterterm Ψ

(2)
1 by

〈φ,Ψ
(2)
1 〉 = − 1

2ǫ
〈 f ◦ φ(0) c(1 + ǫ) 〉W1+2ǫ

. (4.6)

The sum of Ψ
(2)
0 and Ψ

(2)
1 then solves the equation of motion in the limit ǫ → 0:

lim
ǫ→0

〈φ,QB (Ψ
(2)
0 + Ψ

(2)
1 ) + Ψ(1) ∗ Ψ(1) 〉 = 0 . (4.7)

This is not yet the end of the story, as we must also require that the solution be finite as

ǫ → 0. Since Ψ(1) ∗ Ψ(1) is a finite state, QB (Ψ
(2)
0 + Ψ

(2)
1 ) is also finite in the limit ǫ → 0.

This implies that while the state Ψ
(2)
0 + Ψ

(2)
1 can be divergent, the divergent terms must

be BRST closed. It follows that a finite solution can be obtained by simply subtracting
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the divergent terms from Ψ
(2)
0 + Ψ

(2)
1 . Let us isolate the divergent terms in Ψ

(2)
0 . Using the

anticommutation relation {B, c(z) } = 1, the operator insertions in Ψ
(2)
0 can be written as

cV (1)B cV (1 + t) = cV (1)V (1 + t) − cV (1) cV (1 + t)B

=
1

t2
c(1) − 1

t
c∂c(1)B + O(t0) .

(4.8)

Using the formula

〈O1(z1)O2(z2) . . . On(zn) 〉Wα+δα
= 〈O1(z1)O2(z2) . . . On(zn) 〉Wα

+ δα 〈O1(z1)O2(z2) . . . On(zn)L 〉Wα + O(δα2) ,

(4.9)

valid for any set of operators Oi, we find

〈f ◦ φ(0) cV (1)B cV (1 + t)〉W1+t =
1

t2
〈f ◦ φ(0) c(1)〉W1

+
1

t
〈f ◦ φ(0) [c(1)L − c∂c(1)B]〉W1

+ O(t0)

=
1

t2
〈 f ◦ φ(0) c(1) 〉W1

+
1

t
〈φ, ψ′

0 〉 + O(t0) ,

(4.10)

where in the last equality we have used the expression for ψ′
0 [5, 8]. The first term on the

right-hand side is not BRST closed. After integration over t, it gives a divergent term of

O(1/ǫ) which is precisely canceled by the divergent term from Ψ
(2)
1 , as expected. The inte-

gral over t of the second term gives a divergent term of O(ln ǫ) which is not canceled but, as

expected, is BRST closed. (It is in fact BRST exact.) If we define the counterterm Ψ
(2)
2 by

Ψ
(2)
2 = ln(2ǫ)ψ′

0 , (4.11)

we finally assemble a string field Ψ(2) that is finite and satisfies the equation of motion as

follows:

Ψ(2) = lim
ǫ→0

[
Ψ

(2)
0 + Ψ

(2)
1 + Ψ

(2)
2

]
. (4.12)

We can also write the solution as

Ψ(2) = lim
ǫ→0

[
Ψ

(2)
0 − 1

πǫ
c1|0〉 + ln(2ǫ)ψ′

0 +
1

π
L+ c1|0〉

]
, (4.13)

using the following operator expression for Ψ
(2)
1 :

Ψ
(2)
1 = − 1

πǫ
e−ǫL+

c1|0〉 = − 1

πǫ
c1|0〉 +

1

π
L+ c1|0〉 + O(ǫ) . (4.14)

Our construction of Ψ(2) did not rely on any property of V other than the OPE (4.1).

The OPE (4.1) is more restrictive than the generic OPE of a dimension-one primary field.

For example, we may have

V (z)V (w) ∼ 1

(z − w)2
+

1

z − w
U(w) , (4.15)
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where U(w) is some matter primary field of dimension one. In this case, V would not

be exactly marginal. Indeed, there must be a dimension-one primary field Ū such that

〈Ū (z)U(0)〉 = 1/z2. The OPE (4.15) then implies that the three-point function 〈V V Ū〉 is

nonvanishing, while a necessary condition for the exact marginality of V is the vanishing of

〈V V W 〉 for all dimension-one primary fields W . (See, for example, [27].) Thus we expect

that our construction of Ψ(2) should not go through if the OPE takes the form (4.15). Let

us see this explicitly. In this case (4.5) is replaced by

〈 f ◦ φ(0) cV (1) cV (1 + 2ǫ) 〉W1+2ǫ =
1

2ǫ
〈 f ◦ φ(0) c∂c(1 + ǫ) 〉W1+2ǫ

+ 〈 f ◦ φ(0) c∂cU(1 + ǫ) 〉W1+2ǫ + O(ǫ) .
(4.16)

The second term on the right-hand side is finite in the limit ǫ → 0 . The operator c∂cU

is BRST closed, but it is not BRST exact. Therefore the equation of motion cannot be

satisfied by adding a counterterm.

4.2 Gauge condition, L eigenstates, and divergence structure

All the terms of Ψ(2) in (4.13) are annihilated by B except L+c1|0〉:

BL+c1|0〉 = [B,L+]c1|0〉 = B+c1|0〉 6= 0 . (4.17)

Thus, rather curiously, Ψ(2) violates the Schnabl gauge condition. It appears that this

violation is intrinsic. While we can add an arbitrary BRST closed state Z to Ψ(2), we

believe that no choice of Z can restore the Schnabl gauge condition. Indeed, assume that

such a state Z exists:

B(L+c1|0〉 + Z) = 0 , QBZ = 0 . (4.18)

Acting with QB on this equation, we find that Z must satisfy

LZ = −QBBL+c1|0〉 . (4.19)

Note that while the left-hand side is in the image of L, the right-hand side is in the kernel of

L because [L,QB ] = [L,B] = 0 and LL+c1|0〉 = 0 . We believe that (4.19) has no solution

for Z, though we do not have a proof.5

This obstruction in preserving the Schnabl gauge condition when V has the singular

OPE (4.1) is rather unexpected. To gain some insight, let us reconsider the situation in

Siegel gauge. In Siegel gauge the equations of motion (2.4) are solved by setting

Ψ(n) =
b0

L0
Φ(n) . (4.20)

It turns out that the right-hand side is well defined and thus manifestly obeys the gauge

condition because Φ(n) has no overlap with states in the kernel of L0. When the equations

of motion have a solution, Φ(n) is a BRST-exact state of ghost number two. The only

5If an operator is diagonalizable, its kernel and its image have no nontrivial overlap. Since L is non-

hermitian, it is not a priori clear if it can be diagonalized. In principle a state Z solving (4.19) may exist

if L has a suitable Jordan structure, but we find this unlikely.
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BRST-exact state of ghost number two in the kernel of L0 is QBc0|0〉 = 2c1c−1|0〉. We are

claiming that Φ(n) has no overlap with c1c−1|0〉. This is shown using twist symmetry in

the ghost sector. For a generic state in the Fock space

|φ〉 = {matter oscillators} b−mj
· · · b−m1c−nk

· · · c−n1 |0〉 , mi ≥ 2 , ni ≥ −1 , (4.21)

the ghost-twist eigenvalue is defined to be

1 +

j∑

i=1

mi +
k∑

i=1

ni (mod 2) . (4.22)

The linearized solution Ψ(1) is even under ghost twist, which implies that Φ(2) = −Ψ(1)∗Ψ(1)

is also even. On the other hand, the problematic state c1c−1|0〉 is odd. This shows that

Φ(2) has no overlap with it. A little inductive argument can be used to extend this result to

Φ(n) with n > 2. Assuming that all the states Ψ(k) with k < n are even, we see that Φ(n),

which consists of symmetrized star products of the states Ψ(k) with k < n, is also even.

Hence there is no obstruction in finding Ψ(n) = b0
L0

Φ(n). The operator b0/L0 preserves

twist, so Ψ(n) is even, and the induction can proceed to the next step.

We now perform a similar analysis for the case of Schnabl gauge. The formal solution

Ψ(n) =
B

L
Φ(n) (4.23)

is well defined if and only if Φ(n) has no overlap with states in the kernel of L. While

we do not have a complete understanding of the spectrum of L, we will find a consistent

picture by assuming that Φ(n) can be expanded in a sum of eigenstates of L with integer

eigenvalues L ≥ −1.6 We can systematically enumerate the L eigenstates that have ghost

number two and are BRST exact within a subspace of states which can appear in the

expansion of Φ(n). It will be sufficient to focus on states with L ≤ 0. We believe that the

only such states are as follows.

• L = −1: the state c1c0|0〉 = QBc1|0〉.

• L = 0: the state c1c−1|0〉 = 1
2QBc0|0〉.

• L = 0: the state L+c1c0|0〉 = QBL+c1|0〉.

Contrasting the kernel of L with the kernel of L0, we see the surprising appearance of the

extra state L+c1c0|0〉. Since this state is even under ghost twist, it can a priori appear in

Φ(n). The first state c1c−1|0〉 with L = 0 cannot appear, as we have argued before. We

can write the following ansatz for a finite Φ(n):

Φ(n) = α(n)c1c0|0〉 + β(n)L+c1c0|0〉 + Φ
(n)
> , (4.24)

where Φ
(n)
> only contains terms with positive eigenvalues of L. The most general Ψ(n) that

satisfies the equation QBΨ(n) = Φ(n) is the manifestly finite string field

Ψ(n) = α(n)c1|0〉 + β(n)L+c1|0〉 +
B

L
Φ

(n)
> + (BRST closed) . (4.25)

6Here and in what follows we use L to denote the eigenvalue of L as well.
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If β(n) 6= 0, the term L+c1|0〉 violates the gauge condition. In the following we will not

write the BRST-closed term that plays no role.

We are now going to establish a precise relationship between the violation of the gauge

condition and the divergences that can arise in the Schwinger representation of the action

of B/L when the matter operator has singular operator products. When B/L acts on Φ
(n)
> ,

we can use its Schwinger representation

B

L
= lim

Λ→∞

∫ Λ

0
dt Be−tL =

B

L
− lim

Λ→∞
e−ΛL B

L
, (4.26)

since the boundary term vanishes in the limit. Thus we rewrite (4.25) as

Ψ(n) = α(n)c1|0〉 + β(n)L+c1|0〉 + lim
Λ→∞

∫ Λ

0
dt Be−tL(Φ(n) − α(n)c1c0|0〉 − β(n)L+c1c0|0〉)

= lim
Λ→∞

[(∫ Λ

0
dt Be−tLΦ(n)

)
+eΛα(n)c1|0〉 − Λβ(n)BL+c1c0|0〉

]
+β(n)L+c1|0〉. (4.27)

Note that we have

BL+c1c0|0〉 = πψ′
0 . (4.28)

Since the string field Ψ(n) is finite, we see that

∫ Λ

0
dt Be−tLΦ(n) = −eΛα(n)c1|0〉 + Λπβ(n) ψ′

0 + finite . (4.29)

We have thus learned that the divergences of the integral on the left-hand side, which

performs the naive inversion of QB on Φ(n), are directly related to the L = −1 and L = 0

eigenstates in the decomposition of Φ(n). Moreover, the coefficient of the divergence of

O(Λ) is correlated with the coefficient of the Schnabl-gauge violating term L+c1|0〉.
The divergences in (4.29) can only arise from the collision of the cV insertions on the

boundary of the world-sheet. If V has regular operator products, all integrals are manifestly

finite, α(n) = β(n) = 0 for any n, Ψ(n) satisfies the Schnabl gauge condition, and the naive

prescription Q−1
B = B/L is adequate to handle this case, as discussed in section 3. On the

other hand, if V has a singular OPE with itself, (4.27) severely constrains the structure of

the result. Let us look at the case of Ψ(2). To begin with, note that the integral

∫ Λ

0
dt Be−tLΦ(2) (4.30)

is in fact the regularized Ψ
(2)
0 with the identification Λ = − ln(2ǫ). Substituting this

in (4.27), our general analysis predicts

Ψ(2) = lim
ǫ→0

[
Ψ

(2)
0 +

α(2)

2ǫ
c1|0〉 + ln(2ǫ)π β(2) ψ′

0 + β(2) L+ c1|0〉
]

(4.31)

in complete agreement with the explicit result (4.13) with α(2) = −2/π and β(2) = 1/π.

The analysis can be extended to Ψ(n) with n > 2. An interesting simplification occurs

if V = i
√

2
α′ ∂X. Since the number of ∂X is conserved mod 2 under Wick contractions, the
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coefficients α(n) and β(n) are zero for odd n. It follows that for odd n the integral (4.29) is

finite. In particular, we expect that for V = i
√

2
α′ ∂X the most general Ψ(3) is given by

Ψ(3) = − lim
Λ→∞

∫ Λ

0
dt Be−tL

(
Ψ(1) ∗ Ψ(2) + Ψ(2) ∗ Ψ(1)

)
+ (BRST closed) , (4.32)

where the Λ → ∞ limit is guaranteed to be finite.

While Ψ(3) may be obtained this way (setting the arbitrary BRST closed terms to

zero and performing the integral by brute force), in the following subsection we will follow

a route analogous to the one in section 4.1. We will start with a regularized Ψ
(3)
0 and

systematically look for counterterms such that the final state Ψ(3) satisfies the equation of

motion and is finite. The arguments in this section strongly suggest that a finite string field

Ψ(n) satisfying the equation of motion exists for all n and it can be written as a regularized

string field plus counterterms.

4.3 Construction of Ψ(3)

In this subsection we perform an explicit construction of Ψ(3) for V with the OPE (4.1).

The first step is to regularize (3.3) and define Ψ
(3)
0 by

〈φ,Ψ
(3)
0 〉 =

∫ 1

2ǫ

dt1

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) cV (1)B cV (1 + t1)B cV (1 + t1 + t2) 〉W1+t1+t2
. (4.33)

The BRST transformation of Ψ
(3)
0 is given by

〈φ,QBΨ
(3)
0 〉 = − 〈φ,Ψ(1) ∗ Ψ

(2)
0 + Ψ

(2)
0 ∗ Ψ(1) 〉 + R1 + R2 , (4.34)

where

R1 =

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) cV (1) cV (1 + 2ǫ)B cV (1 + 2ǫ + t2) 〉W1+t2+2ǫ ,

R2 =

∫ 1

2ǫ

dt1 〈 f ◦ φ(0) cV (1)B cV (1 + t1) cV (1 + t1 + 2ǫ) 〉W1+t1+2ǫ .

(4.35)

As in the case of QBΨ
(2)
0 , the contributions R1 and R2 from the surface terms at t1 = 2ǫ

and at t2 = 2ǫ, respectively, are nonvanishing. We also need to reproduce − Ψ(1) ∗ Ψ
(2)
1 −

Ψ
(2)
1 ∗Ψ(1) and −Ψ(1) ∗Ψ

(2)
2 −Ψ

(2)
2 ∗Ψ(1) to satisfy the equation of motion. It is not difficult

to realize that the BRST transformation of Ψ
(3)
1 defined by

Ψ
(3)
1 = −

∫ 1

2ǫ

dt1 Ψ(1) ∗ B+
L e(1−t1)L+

L Ψ
(2)
1 −

∫ 1

2ǫ

dt2 Ψ
(2)
1 ∗ B+

L e(1−t2)L+
L Ψ(1) (4.36)

cancels the divergent terms from the OPE’s of cV (1) cV (1 + 2ǫ) in R1 and of cV (1 +

t1) cV (1+ t1 +2ǫ) in R2 and reproduces −Ψ(1) ∗Ψ
(2)
1 −Ψ

(2)
1 ∗Ψ(1). We also introduce Ψ

(3)
2

defined by

Ψ
(3)
2 = −

∫ 1

2ǫ

dt1 Ψ(1) ∗ B+
L e(1−t1)L+

L Ψ
(2)
2 −

∫ 1

2ǫ

dt2 Ψ
(2)
2 ∗ B+

L e(1−t2)L+
L Ψ(1) (4.37)
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so that its BRST transformation reproduces − Ψ(1) ∗ Ψ
(2)
2 − Ψ

(2)
2 ∗ Ψ(1).

However, this is not the whole story. First, when t2 in R1 is of O(ǫ), three V ’s are

simultaneously close so that we cannot simply replace two of them by the most singular

term of the OPE. The same remark applies to R2 when t1 is of O(ǫ). Secondly, while the

contributions from the surface terms at t1 = 2ǫ or at t2 = 2ǫ in the calculation of QBΨ
(3)
2

turn out to vanish in the limit ǫ → 0, the corresponding contributions in the calculation of

QBΨ
(3)
1 turn out to be finite and not BRST exact. These contributions have to be canceled

in order for the equation of motion to be satisfied.

We thus need to calculate R1, R2, QBΨ
(3)
1 , and QBΨ

(3)
2 . The calculations of QBΨ

(3)
1

and QBΨ
(3)
2 are universal for any V which has the OPE (4.1), while those of R1 and R2

are not. Let us begin with QBΨ
(3)
1 . It is convenient to use the CFT description of Ψ

(3)
1

given by

〈φ,Ψ
(3)
1 〉 = − 1

2ǫ

∫ 1

2ǫ

dt1 〈 f ◦ φ(0) cV (1)B c(1 + t1 + ǫ) 〉W1+t1+2ǫ

− 1

2ǫ

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) c(1 + ǫ)B cV (1 + t2 + 2ǫ) 〉W1+t2+2ǫ .

(4.38)

The BRST transformation of Ψ
(3)
1 is

〈φ,QBΨ
(3)
1 〉 = − 〈φ,Ψ(1) ∗ Ψ

(2)
1 + Ψ

(2)
1 ∗ Ψ(1) 〉 + R̃1 + R̃2 + R̃3 , (4.39)

where

R̃1 = − 1

2ǫ

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) c∂c(1 + ǫ)B cV (1 + t2 + 2ǫ) 〉W1+t2+2ǫ ,

R̃2 = − 1

2ǫ

∫ 1

2ǫ

dt1 〈 f ◦ φ(0) cV (1)B c∂c(1 + t1 + ǫ) 〉W1+t1+2ǫ ,

R̃3 = − 1

2ǫ
〈 f ◦ φ(0) cV (1) c(1 + 3ǫ) 〉W1+4ǫ −

1

2ǫ
〈 f ◦ φ(0) c(1 + ǫ) cV (1 + 4ǫ) 〉W1+4ǫ .

(4.40)

As we mentioned earlier, the BRST transformation of Ψ
(3)
1 reproduces −Ψ(1) ∗Ψ

(2)
1 −Ψ

(2)
1 ∗

Ψ(1), and R̃1 and R̃2 cancel part of R1 and R2, respectively. The last term R̃3 is finite in

the limit ǫ → 0 and not BRST exact:

R̃3 = − 3 〈 f ◦ φ(0) c∂cV (1) 〉W1 + O(ǫ) . (4.41)

Let us next calculate QBΨ
(3)
2 . It is again convenient to use the CFT description of Ψ

(3)
2 :

〈φ,Ψ
(3)
2 〉 = ln(2ǫ)

∫ 1

2ǫ

dt1 〈 f ◦ φ(0) cV (1)B QB · [B c(1 + t1) ] 〉W1+t1

+ ln(2ǫ)

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) QB · [B c(1) ] B cV (1 + t2) 〉W1+t2
.

(4.42)

The BRST transformation of Ψ
(3)
2 is given by

〈φ,QBΨ
(3)
2 〉 = − 〈φ, Ψ(1) ∗ Ψ

(2)
2 + Ψ

(2)
2 ∗ Ψ(1) 〉

− ln(2ǫ) 〈 f ◦ φ(0) QB · [ cV (1)B c(1 + 2ǫ) ] 〉W1+2ǫ

+ ln(2ǫ) 〈 f ◦ φ(0) QB · [B c(1) cV (1 + 2ǫ) ] 〉W1+2ǫ .

(4.43)
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Since the BRST transformations of cV (1)B c(1 + 2ǫ) and B c(1) cV (1 + 2ǫ) are both of

O(ǫ), the last two terms vanish in the limit ǫ → 0. We have thus shown that

lim
ǫ→0

〈φ,QBΨ
(3)
2 + Ψ(1) ∗ Ψ

(2)
2 + Ψ

(2)
2 ∗ Ψ(1) 〉 = 0 . (4.44)

To summarize, we have seen that the BRST transformation of Ψ
(3)
0 + Ψ

(3)
1 + Ψ

(3)
2

reproduces −Ψ(1)∗Ψ(2)−Ψ(2)∗Ψ(1) with Ψ(2) = Ψ
(2)
0 +Ψ

(2)
1 +Ψ

(2)
2 , and there are remaining

terms R1, R2, R̃1, R̃2, and R̃3. We now calculate R1 and R2. These terms involve a triple

operator product of V ’s and the results depend on V . We choose

V (z) = i

√
2

α′ ∂X(z) , (4.45)

which is exactly marginal. With this choice of V , the triple operator product of V ’s on

Wn−1 is

V (z1)V (z2)V (z3) = Gn−1(z1 − z2)V (z3) + Gn−1(z1 − z3)V (z2) + Gn−1(z2 − z3)V (z1)

+ :V (z1)V (z2)V (z3): ,

(4.46)

where Gn−1 is the propagator on Wn−1:

Gn−1(z) =
π2

n2

[
sin

πz

n

]−2
=

1

z2
+ O(z0) . (4.47)

The normal-ordered term in (4.46) does not contribute in the calculations of R1 and R2 in

the limit ǫ → 0 . The term with V (1) and V (1 + 2ǫ) contracted in R1 cancels R̃1:

lim
ǫ→0

[ ∫ 1

2ǫ

dt2 G1+t2+2ǫ(2ǫ) 〈 f ◦ φ(0) c(1) c(1 + 2ǫ)B cV (1 + 2ǫ + t2) 〉W1+t2+2ǫ + R̃1

]
= 0 .

(4.48)

The remaining two terms are finite in the limit ǫ → 0:

lim
ǫ→0

[ ∫ 1

2ǫ

dt2 G1+t2+2ǫ(t2) 〈 f ◦ φ(0) cV (1) c(1 + 2ǫ)B c(1 + 2ǫ + t2) 〉W1+t2+2ǫ

+

∫ 1

2ǫ

dt2 G1+t2+2ǫ(t2 + 2ǫ) 〈 f ◦ φ(0) c(1) cV (1 + 2ǫ)B c(1 + 2ǫ + t2) 〉W1+t2+2ǫ

]

=
3

2
〈 f ◦ φ(0) c∂cV (1) 〉W1 .

(4.49)

We therefore have

lim
ǫ→0

[
R1 + R̃1

]
=

3

2
〈 f ◦ φ(0) c∂cV (1) 〉W1 . (4.50)

The calculation of R2 is parallel, and we obtain

lim
ǫ→0

[
R2 + R̃2

]
=

3

2
〈 f ◦ φ(0) c∂cV (1) 〉W1 . (4.51)
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The sum of the five remaining terms vanishes in the limit ǫ → 0:

lim
ǫ→0

[
R1 + R2 + R̃1 + R̃2 + R̃3

]
= 0 . (4.52)

We have thus shown

lim
ǫ→0

〈φ,QB [ Ψ
(3)
0 + Ψ

(3)
1 ] + Ψ(1) ∗ [ Ψ

(2)
0 + Ψ

(2)
1 ] + [Ψ

(2)
0 + Ψ

(2)
1 ] ∗ Ψ(1) 〉 = 0 (4.53)

and

lim
ǫ→0

〈φ,QB [ Ψ
(3)
0 + Ψ

(3)
1 + Ψ

(3)
2 ] + Ψ(1) ∗ Ψ(2) + Ψ(2) ∗ Ψ(1) 〉 = 0 . (4.54)

The sum of the five terms did not have to vanish in the limit ǫ → 0 , but it had to be

BRST exact to satisfy the equation of motion by adding a counterterm. In particular, the

coefficient in front of 〈 f ◦ φ(0) c∂cV (1) 〉W1 had to vanish. We found that R̃3 from Ψ
(3)
1 is

nontrivially canceled by contributions from Ψ
(3)
0 .

Let us next study the divergent terms of Ψ
(3)
0 . The triple operator product of V ’s

in (4.33) can be written as follows:

V (1)V (1 + t1)V (1 + t1 + t2)

= G1+t1+t2(t2)V (1) + G1+t1+t2(t1)V (1 + t1 + t2)

+ G1+t1+t2(t1 + t2)V (1 + t1)+ : V (1)V (1 + t1)V (1 + t1 + t2) : .

(4.55)

Note that no further divergence appears when remaining operators collide. The contribu-

tion from the normal-ordered product in the last line is obviously finite. The divergent

terms from the first two terms on the right-hand side are canceled by the divergent terms

from Ψ
(3)
1 and Ψ

(3)
2 . The contribution from the third term on the right-hand side is

∫ 1

2ǫ

dt1

∫ 1

2ǫ

dt2

(
π

t1 + t2 + 2

)2 [
sin

π (t1 + t2)

t1 + t2 + 2

]−2

× 〈 f ◦ φ(0) c(1)B cV (1 + t1)B c(1 + t1 + t2) 〉W1+t1+t2
.

(4.56)

This contains a divergent term − ln(4ǫ) 〈 f ◦ φ(0) cV (1) 〉W1 , which comes from the most

singular term 1/(t1+t2)
2 in the region where t1 and t2 are simultaneously of O(ǫ). Note that

the divergent term is proportional to Ψ(1) and thus BRST closed, as expected. Therefore,

if we define

Ψ(3) = lim
ǫ→0

[
Ψ

(3)
0 + Ψ

(3)
1 + Ψ

(3)
2 + Ψ

(3)
3

]
, (4.57)

where

Ψ
(3)
3 = ln(4ǫ)Ψ(1) , (4.58)

Ψ(3) is finite and satisfies the equation of motion:

〈φ, QBΨ(3) + Ψ(1) ∗ Ψ(2) + Ψ(2) ∗ Ψ(1) 〉 = 0 . (4.59)
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An explicit form of Ψ(3) is given by

〈φ,Ψ(3) 〉 = lim
ǫ→0

[ ∫ 1

2ǫ

dt1

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) cV (1)B cV (1 + t1)B cV (1 + t1 + t2) 〉W1+t1+t2

− 1

2ǫ

∫ 1

2ǫ

dt1 〈 f ◦ φ(0) cV (1)B c(1 + t1 + ǫ) 〉W1+t1+2ǫ

− 1

2ǫ

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) c(1 + ǫ)B cV (1 + t2 + 2ǫ) 〉W1+t2+2ǫ

+ ln(2ǫ)

∫ 1

2ǫ

dt1 〈 f ◦ φ(0) cV (1)B QB · [B c(1 + t1) ] 〉W1+t1

+ ln(2ǫ)

∫ 1

2ǫ

dt2 〈 f ◦ φ(0) QB · [B c(1) ] B cV (1 + t2) 〉W1+t2

+ ln(4ǫ) 〈 f ◦ φ(0) cV (1) 〉W1

]
.

(4.60)
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